
Competing multiple-q magnetic structures in HoGe3: II. Magnetic structures observed in

HoGe3

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 195202

(http://iopscience.iop.org/0953-8984/20/19/195202)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 11:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/19
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 195202 (13pp) doi:10.1088/0953-8984/20/19/195202

Competing multiple-q magnetic structures
in HoGe3: II. Magnetic structures
observed in HoGe3

P Schobinger-Papamantellos1, J Rodrı́guez-Carvajal2, L D Tung3,
C Ritter2 and K H J Buschow4

1 Laboratory of Crystallography, ETH-Zurich, 8093 Zürich, Switzerland
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Abstract
The high temperature (HT) and the low temperature (LT) multiple-q vector magnetic structures
of the antiferromagnetic HoGe3 compound (TN = 11 K) are derived from refinements of high
resolution neutron data in terms of Fourier analysis. Various models are discussed. Over the HT
range T2 → TN, T2 = 8.1 K (on heating), the magnetic phase is described with the wavevectors
(q1, q2) where q1 = (q1x, 0, 0) and q2 = (q2x, 0, q2z), q1x = q2x ≈ 1

2 and q2z ≈ 1
3 , with T

dependent length. It corresponds to an amplitude modulated magnetic phase with the moments
at an angle of 24◦ (2) with the c axis within the plane (b, c). Surprisingly this structure does not
square up to a constant moment structure with q1 = ( 1

2 , 0, 0) and q2 = ( 1
2 , 0, 1

3 ) or alternatively
(2a, b, 3c). Instead of locking, the q2 vector jumps at T2 via a first-order transition to a long
period structure with an almost 24-times larger cell ≈(2a, 4b, 3c), or in terms of wavevectors to
q3 = ( 1

2 , q3y, 0) and q4 = ( 1
2 , q4y,

1
3 ), which dominates the (LT) range 1.6 K → T2. The (LT)

range subdivides into the lock-in LT1 range 1.6 K → T3 (T3 = 4.8 K on heating) where the
q3y = q4y = 1

4 components have a constant length and the LT2 range T3 → T2 where q3y and
q4y have a length variable with T . In the intermediate temperature range, around the first-order
T2 transition (on heating or cooling), the two structures described with the wavevectors (q1, q2)
and (q3, q4) coexist in varying proportions. The most probable LT magnetic structure
corresponds to a complex monoclinic multiaxial canted structure with four independent Ho sites
as a result of geometric frustration related to the underlying trigonal prism arrangement of the
magnetic atoms with antiferromagnetic interactions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Part I of the paper summarizes the physical properties
and the results of a model independent analysis of high
resolution neutron powder diffraction data for the HoGe3

antiferromagnetic (TN = 11 K) compound. This analysis led
to a rather complex magnetic phase diagram (figure 12, part I)
comprising two main regions of magnetic ordering: (i) a high
temperature range and a (ii) low temperature range. These two

regions are characterized by two multiple-q vector magnetic
structures with symmetry independent wavevectors, and the
transition among them at T2 is of first order. A hysteresis
width of 1.5 K is observed for T2 depending on whether
this temperature is determined from data obtained by heating
T H

2 = 8.1 K or cooling T C
2 = 6.6 K; this is denoted by the

superscripts H and C.
Long range magnetic ordering appears just below the Néel

transition temperature TN = 11 K, in agreement with the
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magnetization and specific heat measurements. The latter
transition is of second order, no hysteresis phenomena being
observed between neutron data obtained by heating or cooling.
The magnetic ordering is manifested by the appearance of the
wavevector q2 = (q2x, 0, q2z) that dominates the HT range
T2 → TN, T H

2 = 8.1 K and T C
2 = 6.6 K. At slightly

lower temperature around T1 ≈ 9.5 K, a very weak reflection
appears close to the position ( 1

2 , 1, 0) at 2θ = 18.75◦ in the
high intensity (D1B) data. We assign to it the wavevector
q1 = (q1x, 0, 0). Its role is not yet unambiguously clarified
as the available information is extracted from the behaviour
of very weak and overlapping observations in the transition
ranges. Therefore we assume that it participates in a narrow
region of the HT phase.

The LT ordering is characterized by the wavevectors q3 =
( 1

2 , q3y, 0) and q4 = ( 1
2 , q4y,

1
3 ) appearing below the first-

order transition T H
2 = 8.1 K at the cost of the HT q1 and q2

satellites, which disappear completely at lower temperatures
(7.75 K in the present experiment), while the q3 and q4 satellite
reflections dominate the LT range and exist down to the lowest
measured temperature, 1.6 K. The coexistence range of the q2

and (q3, q4) magnetic phases is 0.5 K around T H
2 and 0.8 K

around T C
2 . A further first-order lock-in transition is observed

at T3 = 4.8 K. Below T3 the vectors q3 = ( 1
2 ,

1
4 , 0) and

q4 = ( 1
2 , 1

4 , 1
3 ) have a constant length (LT1 range), and above

T3 a length variable with T and q3y = q4y (LT2 range).
In the present part of our paper we develop a model

dependent analysis of the neutron data concerning the
magnetic ordering for the HT and LT ranges. It comprises
symmetry analysis, model choice for various refinements of
the HR neutron diffraction data and finally the derivation of
magnetic structures from the refined Fourier coefficients. The
results are compared to those for isomorphic RGe3 systems for
which neutron diffraction data are available.

2. Neutron diffraction

The refinements of the magnetic structures given in the present
paper are based exclusively on high resolution D1A neutron
diffraction patterns collected with two wavelengths.

The data collected with a larger wavelength of 2.99 Å and
very good statistics provide the best resolved magnetic patterns
and they are also used to detect the magnetic wavevector(s) and
higher harmonics and resolve the large number of overlapping
magnetic peaks. They are also used in magnetic refinements.
The eighteen data sets are partly collected with a temperature
step of 0.1 K.

The 1.9108 Å data, with a larger 2θ range, are used
for eight selected temperatures for indexing of the magnetic
reflections (see figures 1 and 5 in paper I) and simultaneous
structural and magnetic refinements in order to check for
possible structural transitions in the high angle part. The
data analysis is done with the FullProf suite of programs [1].
The structure plots are obtained with the program FullProf
Studio [2] incorporated in [1]. Results are given in the
following sections.

3. Model dependent magnetic refinements

3.1. The high temperature range 8.1 K < T < 11 K, D1A
1.9108 Å data

3.1.1. Refinements of the 10.28 K data, q2 = (q2x, 0, q2z).
The HoGe3 HT magnetic phase, stable over the range
8.1 K → 11 K, is described by the symmetry independent
incommensurate wavevectors (q1, q2) with q1 = (q1x,0, 0),
q1x ≈ 1

2 and q2 = (q2x, 0, q2z), q2x ≈ 1
2 , q2z ≈ 1

3 relating to
the C-cell (a, b, c). Although the HT magnetic peak topology
is similar to that of the TbGe3 (q1, q2) HT phase at 27 K [3],
for HoGe3 it differs in a few points, in particular with regard
to the behaviour of the q1 vector (see for instance figure 8 in
part I).

At 10.28 K no reflections associated with the wavevector
q1 have been observed. As can be seen in figure 1, even at
9.31 K the first expected q1 peak (110) − q1 is not resolved
from the background. The 10.28 K incommensurate structure
is then described with a single Fourier coefficient pertaining to
q2. The refined q2 components, obtained from the D1A 2.99 Å
data at 10.28 K with the profile matching program tool, are
q2x = 0.4933(1) and q2z = 0.3392(2). Fixing q2x and q2z to
their commensurate values leads to a 2% increase of Rwp. This
suggests that the HT magnetic structure is incommensurate
with the crystal lattice and can be described with a single
wavevector q2. The 10.28 K refined magnetic parameters are
summarized in table 1. The refined magnetic structure shown
in figure 2 corresponds to a collinear amplitude modulated
structure with the moments confined to the (b, c) plane at an
angle of 24◦(2) to the c axis. The amplitude of the wave
(Fourier coefficient) of 4.5(5) μB/Ho atom is strongly reduced
below the free ion value g JμB = 10 μB for Ho3+ most likely
because of thermal disorder and coexisting short range order
effects. Details for the HT magnetic structure will be discussed
in the following sections.

3.1.2. Indexing and refinement of the 8.34 K (q1, q2) phase,
D1A data. The indexing of the 8.34 K magnetic reflections
requires two wavevectors. We already mentioned that below
T1 = 9.5 K, in agreement with the anomaly observed in the
specific heat (figure 4 C/T data, part I), a phase transition
associated with a second wavevector q1 sets in. The appearance
of a uniquely resolved peak close to the ( 1

2 , 1, 0) reciprocal
lattice position marks the onset of this transition. This peak
becomes more important at 8.34 K, but below T H

2 = 8.1 K
it is no longer resolved in the 1.91 Å data. By the analogy
with the TbGe3 HT phase, we assume that this wavevector
is q1 = (q1x, 0, 0) and relates to the (q1, q2) HT modulated
structure in a narrow range from T1 and down to T2. Its
presence is a first sign that the HT phase became unstable and
‘tried’ to square up.

The data evaluation follows the results of symmetry
analysis given extensively in [3] for the wavevectors q1 and q2

and the space group Cmcm. These results provide parameter
relations (basis functions) between the components of the
Fourier coefficients of the two atoms of the basis cell at the

2
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Figure 1. Parts of the observed and calculated neutron diffraction patterns for HoGe3 (D1A 1.91 Å data): for the HT magnetically ordered
state at 9.31 K (a), 8.34 K (b) with the magnetic vectors q2 and (q1, q2) respectively.

Table 1. Refined magnetic moment amplitudes for the q1 and q2 Fourier coefficients Sqi , the phases, ϕqi , and the global phase, �a
G, for Ho1

at (0, y, 1
4 ) and Ho2 at (0,−y, 3

4 ) in the HT range (10.28 K, 9.31 K and 8.34 K) from neutron D1A data (1.91 Å) of HoGe3. The moment
angle to the c axis is ϕc = 24◦ (2). The Ho3 and Ho4 atoms shifted by ( 1

2 ,
1
2 , 0) have the same moment values but opposite signs. Rm% is the

agreement factor for the magnetic refinements. Calculated local moment values (right part) for 12 Ho atoms at 10.28 K. The labels correspond
to those of figure 2.

Atom ϕ(q1)/ϕ(q2)
Sy(q j )
(μB)

Sz(q j )
(μB)

|S(q j )|
(μB)

�G

ϕ◦
c Rm%

Atom
figure 2

μy

(μB)
μz

(μB)
μT

(μB)

10.28 K, q2x = 0.4932(2), q2z = 0.3392(2) 9 1 −0.87 −1.8 2.03
Ho1(q2) 0 2.0(2) 4.0(1) 4.50(5) 0.639 1′ 1.35 2.84 3.15
Ho2(q2) 0.66(2) 2.0(2) 4.0(1) 4.50(5) 26(3) 1′′ −0.56 −1.19 1.32

9.31 K, q2x = 0.4926(1), q2x = 0.3383(1) 6.6 2 −0.40 −0.85 0.939
Ho1(q2) 0 2.3(2) 5.7(6) 6.20(4) 0.639 2′ −0.89 −1.87 2.07
Ho2(q2) 0.66(1) 2.3(2) 5.7(6) 6.20(4) 22(2) 2′′ 1.349 2.840 3.144

8.34 K, q2x = 0.4931(1), q2x = 0.3376(1) 6.5 3 1.03 2.17 2.403
Ho1(q1) 0 0 0.3(1) 0.3(1) 0.639 3′ 0.209 0.439 0.487
Ho1(q2) 0 2.8(1) 6.41(6) 7.01(3) 24(1) 3′′ −1.25 −2.64 2.92

4 −1.31 −2.76 3.06
4′ 1.015 2.14 2.366

Ho2(q1) 0 0 0.3(1) 0.3(1) 4′′ 0.232 0.49 0.542
Ho2(q2) 0.68(1) 2.8(1) 6.41(6) 7.01(3)

a ϕqi is the phase between Fourier components in fractions of 2π of magnetic moments of the same representation in the
commensurate refinement fixed by symmetry. The total phase for each atom is obtained from the relation
�T j = ϕ(qi) + �G . �G are global phases in fractions of 2π (origin shift) of a given arrangement, obtained by
optimization.
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Figure 2. The collinear amplitude modulated magnetic structure of
HoGe3 at 10.28 K for a few cells along the c direction. The moment
value varies over 0.5 → 3.15 μB/atom depending on the position;
see table 1 (right part).

4c symmetry site for the two wavevectors:

Ho at 4c, m2m: Ho1: (0, y, 1/4); Ho2: (0,−y,−1/4),

y = 0.417.

The 8.34 K refined data show that the moment angle with the
c axis remains, within experimental error, unchanged going
down with temperature. The main difference from the 10.28 K
results is the Sq1 Fourier coefficient. Using the same model
as for the TbGe3 (q1, q2) phase we find an increase of the
refined moment amplitude Sq2 from 4.5(5) μB/Ho at 10.28 K
to 7.0(3) μB/Ho atom at 8.34 K, while Sq1 is negligible,
0.33(1) μB/Ho, and its refinement is unstable. Most likely the
behaviour of the TbGe3 HT fluctuating sinusoidal model does
not apply for HoGe3. We show the refined neutron patterns
at 9.31 K and 8.34 K in figure 1. The refinements of the q1

contributions are restricted just to the low angle (2θ < 60◦)
range for obvious reasons and are visible only at 8.34 K.
Results are given in table 1. The magnetic reliability factors
(6 → 9%) are satisfactory. The structural parameters have
been given in table 1, part I.

3.1.3. The HT magnetic structures. The incommensurate q1

and q2 magnetic structures correspond to sinusoidal modulated
structures. At 8.34 K the refined Fourier coefficients are
0.33(1) μB for q1 and 7.0(3) μB/Ho atom for q2 (table 1). The
real structure for each independent system may be derived by
Fourier expansion from the refined Fourier coefficients Sν(q j)

of the magnetic moments in the basic unit cell (table 1) using
the expression

mν(Rn) =
∑

{ j}
Sν(q j) exp(−2π iq j · Rn)

=
∑

j

SR
ν (q j ) cos{2πq j · Rn + ϕ jν} (1)

m ′
ν(Rn) =

∑

{ j}
Sν(q j) exp(−2π iq j ·Rn + �G) (1′)

where Rnν = rν + Rn are the moment positions and Rn =
n1a + n2b + n3c is a lattice translation vector with n3 always

integer and (n1, n2) integer or simultaneously half-integers (for
the C-centred lattice); rν is the vector position of the atom ν in
a primitive unit cell (in our case ν = 1, 2).

The first sums extend for all pairs (q j , −q j ) of propagation
vectors. The last sum assumes that the Fourier coefficients
have the form Sν(q j ) = 1

2 SR
ν (q j )e−iϕ jν so that only cosine

terms appear after grouping the pairs (q j , −q j ). The
global phase �G is a free parameter not depending on
symmetry. The phases ϕν(q j ) = ϕ jν between atoms of
the same orbit are deduced by symmetry analysis from the
basis functions of the representation [3]. These are usually
products of the wavevectors with the translation part of the
symmetry operators of Gq and/or returning translations. In
commensurate phases these are fixed. If there is more than one
orbit, an additional phase between the orbits has to be refined.

The amplitudes of the Fourier coefficients of the q1

magnetic phase are strongly reduced below the free ion
value. In principle the q1 and q2 Fourier coefficients describe
two independent magnetic systems coexisting in the form of
domains.

Alternatively one may assume that the two wavevectors
act on the same physical space. In this case the real structure
has to be derived using equation (1) by adding up all observed
Fourier coefficients. Applying this to the 8.34 K data one
derives maximal amplitude of 7.3(3) μB/Ho atom. Compared
to that of the 9.31 K (Sq2 = 6.2(4) μB/Ho atom; see
table 1) one finds a 15% increase. Because of the doubts
concerning the Sq1 Fourier component at 8.34 K and its
negligible contribution we restrict ourselves to showing the
modulated structure at 10.28 K (figure 2).

When a structure has various vectors q, it is not always
possible to derive the spin configuration because the phase
between the various Fourier coefficients cannot be found by
diffraction methods [4]. The reason is that the addition of
a global phase �G depending on q modifies the magnetic
structure, through origin shifts of the waves q, without
changing the magnetic intensities. The moment distribution
given by equation (1′) gives the same diffraction pattern as
that of equation (1). Figure 2 shows the magnetic structure at
10.28 K optimized using the program ‘Moment’ for a limited
region of the crystal. In fact this program makes a phase
search (�G) for a given periodic magnetic moment distribution
(commensurate with the crystal lattice) in order to minimize
the fluctuation in the local magnetic moment values resulting
from the refined Fourier coefficients using formula (1). This
corresponds to the addition of a global phase �G in fractions
of 2π (origin shift in formula (1′)) of the wave describing a
given periodic arrangement. For incommensurate sine wave
magnetic structures the addition of a global phase may only
have an influence on the moment fluctuations in a small part
of the crystal and not in a larger area, as the structure remains
incommensurate.

Thus the calculated amplitude modulated structure
displayed in figure 2 at 10.28 K for the wavevector q2 =
(0.4932(2), 0, 0.3392(2)) ≈ (0, 1

2 ,
1
3 ) is obtained from the

refined Fourier coefficients of the Ho1 and Ho2 atoms in the
basis cell (4.5 μB/atom; see table 1) when a global phase of
�G = 0.639 × 2π is inserted in (1) and �T = ϕ(qi) + �G.

4
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Table 2. Atomic positions in the Pmcm setting (2a, b, 3c). The 24 Ho atoms occupy six Wyckoff sites: Ho1′: 4i (0, 0.41, 1
12 ) Ho2′: 4 j

( 1
12 ,

1
2 , 0.41); Ho3′: 8l ( 1

4 , 0.91, 1
12 ); Ho4′: 2e (0, 0.59, 1

4 ); Ho5′: 2 f ( 1
2 , 0.59, 1

4 ); Ho6′: 4k ( 1
4 , 0.09, 1

4 ). Columns 1 → 3 give the atomic
positions correlated through constraints imposed in the magnetic refinements. Each of the six sites splits into two orbits (1 and 2) under the
action of the wavevector (0, 1

4 , 0). Atom numbers relate to the international settings and are in bold for orbit 1.

Site Ho1 Site Ho2 Site Ho3 Site Ho4
x y z Orbit 1 x y z Orbit 2 x y z Orbit 1 x y z Orbit 2 x y z

0 y z 4i : 1 0 0.41 1/12 4i : 4 0 0.59 7/12 2e: 1 0 0.59 1/4 2e: 2 0 0.41 3/4
0 y z̄ + 1/2 2 0 0.41 5/12 3 0 0.59 11/12
1/2 y z 4 j : 1 1/2 0.41 1/12 4 j : 4 1/2 0.59 7/12 2 f : 1 1/2 0.59 1/4 2 f : 2 1/2 0.41 3/4
1/2 y z̄ + 1/2 2 1/2 0.41 5/12 3 1/2 0.59 11/12
1/4 y + 1/2 z 8l : 1 1/4 0.91 1/12 8l : 6 1/4 0.09 7/12 4k: 1 1/4 0.09 1/4 4k: 3 1/4 0.91 3/4
1/4 y + 1/2 z̄ + 1/2 8 1/4 0.91 5/12 3 1/4 0.09 11/12
3/4 y + 1/2 z 7 3/4 0.91 1/12 4 3/4 0.09 7/12 2 3/4 0.09 1/4 4 3/4 0.91 3/4
3/4 y + 1/2 z̄ + 1/2 2 3/4 0.91 5/12 5 3/4 0.09 11/12

Table 3. Irreducible representations and magnetic modes for orbit 1 of the sites 8l, 4i, 4 j , and 4k that split into two orbits under the action of
the vector q = (0, 1

4 , 0) in Pmcm (51); see table 2. The symbols for the magnetic modes are: A(+ − −+); G(+ − +−): C(+ + −−) and
F(+ + ++) for the 8l site and A(+−) and F(++) for the 4i, 4 j and 4k sites in the sequence given in table 2. The moments of the atoms of
the orbits of 2e and 2 f sites point along y, z and x for the representations �2, �3, �4 respectively. Also given are the observed modes
corresponding to two different representations.

8l 4i 4 j 4k
Irrep (1|0) (2y|001/2) (mz |001/2) (mx |0) x y z x y z x y z x y z

�1 1 1 1 1 Gx Ay Cz Ax Ax Az
�2 1 1 −1 −1 Cx Fy Gz Fy Az Fy Az Ax Fy
�3 1 −1 1 −1 Ax Gy Fz Ay Fz Ay Fz Fz
�4 1 −1 −1 1 Fx Cy Az Fx Fx Fx Ay

Observed modes �1 Ay Cz �3 Ay Fz �3 Ay Fz �1 Az

The moment values in figure 2 for a large number of cells
(2×a, b, 4×c) are given in the right part of table 1. We use the
same labels as in figure 2. The magnetic moment value varies
over 0.5 → 3.2 μB/Ho atom. The moments of the atoms 3 and
4 shifted by ( 1

2 , 1
2 , 0) from those of 1 and 2 are almost equal to

those of 1 and 2 but with opposite sign. As the temperature
goes down, the refined Fourier coefficients increase and the
local values increase, though the global phase is the same.
The structure remains incommensurate and the ordered local
moment value is position dependent in the direction of the
wavevector and constant in planes perpendicular to it.

3.2. The low temperature range 1.6 K < T < 8.1 K , D1A
1.9108 Å data

The indexing of the magnetic satellites in the LT range led to a
24-times larger cell. The huge number of reflections produced
in the (2a, 4b, 3c) commensurate cell imply a situation close
to the limits of powder diffraction. Alternatively we make use
of two models in terms of Fourier coefficients with different
wavevectors and basis. Model (I) has a single wavevector q =
(0, qy, 0) with qy ≈ 1

4 and relates to the (2a, b, 3c) P-cell.
Model (II) uses two wavevectors (q3, q4), q3 = ( 1

2 , q3y, 0),
q4 = ( 1

2 , q4y,
1
3 ) q3y = q4y ≈ 1

4 and relates to the
(a, b, c) C-cell. The wavevector star of q3 and q4 has four
and eight branches respectively. The latter model produces the
minimum number of reflections (1330). In model (II) the Ho
site splits into two orbits for each of the two vectors and is
described by a single representation for q4 with (mx , m y, mz)

moment components and with two representations for q3, one
allowing only mz uniaxial moment arrangements, the other

planar (mx, m y). Our refinements make use of both. Model (I)
led to better fits as the number of free parameters increased
from 4 against 1330 reflections to 5 against 7930 reflections.
In the following we will show the refined structures for the
calculations for comparison and discuss the results together
with the refinements carried on the better resolved 2.99 Å
D1A data. These data are also used for the refinement of the
wavevector components versus T for a full set of temperatures.

3.2.1. Symmetry analysis for model (I).

Propagation vector q = (0, 1
4 , 0)Pmcm(2a, b, 3c). Model

(I) relates to the primitive enlarged cell (2a, b, 3c) in the
non-standard space group Pmcm (No 51) and the wavevector
(0, 1

4 , 0). The 24 Ho atoms in this setting (see table 2)
occupy six distinct Wyckoff sites: Ho1′: 4i (0, 0.41, 1

12 ), Ho2′:
4 j ( 1

12 ,
1
2 , 0.41); Ho3′: 8l ( 1

4 , 0.91, 1
12 ); Ho4′: 2e (0, 0.59, 1

4 );
Ho5′: 2 f ( 1

2 , 0.59, 1
4 ); Ho6′: 4k ( 1

4 , 0.09, 1
4 ). Atom sites relate

to the international settings.
The point group of q is G0

1 = m2m = {1, mx , 2y, mz}
which has four one-dimensional representations. The magnetic
structure can be described by any of these four representations
or any linear combination among them. The star of q has
two arms: (q, −q). The representations of the space group
of q, G = Pm2m, are obtained from those of G0

1 using the
expression

Dγ (h|th) = e−2π iqth D0γ (h). (2)

The coset representatives of G with respect to the
translation group are (1|0), (2y|001/2), (mx |0), (m y |001/2).
Due to the particular form of the translations the products qth

5
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Table 4. The signs of the observed moment components (u, v, w) of the 24 Ho atoms distributed over the twelve magnetic orbits associated
with the six Wyckoff sites and the wavevector (0, 1

4 , 0): Ho1′: 4i (0, 0.41, 1
12 ) Ho2′: 4 j ( 1

12 , 1
2 , 0.41); Ho3′: 8l ( 1

4 , 0.91, 1
12 ); Ho4′: 2e

(0, 0.59, 1
4 ); Ho5′: 2 f ( 1

2 , 0.59, 1
4 ); Ho6′: 4k ( 1

4 , 0.09, 1
4 ).

Site Ho1 Site Ho2 Site Ho3 Site Ho4
x y z Orbit 1 u v w Orbit 2 u v w Orbit 1 u v w Orbit 2 u v w

0 y z 4i : 1 + + 4i : 4 + + 2e: 1 + 2e: 2 +
0 y z̄ + 1/2 2 − + 3 − +
1/2 y z 4 j : 1 − − 4 j : 4 − − 2 f : 1 − 2 f : 2 −
1/2 y z̄ + 1/2 2 + − 3 + −
1/4 y + 1/2 z 8l : 1 − − 8l : 6 − − 4k: 1 − 4k: 3 −
1/4 y + 1/2 z̄ + 1/2 8 + − 3 + −
3/4 y + 1/2 z 7 + + 4 + + 2 + 4 +
3/4 y + 1/2 z̄ + 1/2 2 − + 5 − +

are zero and the matrices Dγ are identical to D0γ . Under the
action of the wavevector (0, 1

4 , 0) each of the six Ho sites splits
into two orbits in the way given in table 2. Atom numbers of
orbit 1 are in bold.

In table 3 we give the representations and the basis
functions corresponding to four of the Ho sites, 8l, 4i, 4 j and
4k, and the propagation vector q. The orbits of sites 2e and
2 f harbour a single atom and are not given explicitly. The
basis functions F(+ + ++), A(+ − −+), C(+ + −−) and
G(+−+−) give the signs of the Fourier components Sqν of the
(ν = 1, . . . , 4) Ho atoms for the orbits of the 8l site. The signs
of the modes F, A, C and G relate to the atoms in the sequence
given in table 2. For instance, for the atoms (1, 2) of orbit 1 of
the 4k site the Fourier components of the representation �1 are
of the form of the Ax(+−) mode:

Sq1 = (u, 0, 0) and Sq2 = (−u, 0, 0).

Atoms (3, 4) belong to the second orbit which has the same
mode but may have different moment value. The same basis
functions correspond to the other arm of the star. Thus the
magnetic structure for this site corresponds to a modulated
structure with atoms 1 and 2 for orbit 1 in antiphase within
the reference cell. The same holds for orbit 2.

Symmetry analysis shows that the atoms of orbits 1 and 2
of the 8l site may have three magnetic components, while those
of the orbits of the 4i , 4 j and 4k sites may have either one or
two components. Finally the 2e and 2 f orbits not included in
table 2 may only have a component along the axes y, z and x
in the representations �2, �2, �4 respectively. The parameter
reduction resulting from the symmetry analysis is used in the
refinements of various models.

Additional parameter constraints used in model (I). Further
parameter constraints are inserted in our refinements through
the simple assumption that the LT commensurate magnetic
structure maintains some of the characteristics of the HT phase
as the (2a, b, 3c) enlarged cell corresponds to the lock-in value
of the HT incommensurate structure described with q1 ≈
( 1

2 , 0, 0) and q2 ≈ ( 1
2 , 0, 1

3 ) and Cmcm space group (a, b, c).
In the incommensurate phase the moments of atoms

shifted by ta and by the non-primitive translation ( 1
2 ,

1
2 , 0) have

opposite signs but slightly different values. In the lock-in phase
in the sixfold-enlarged cell (2a, b, 3c) with Pmcm symmetry

and the wavevector q = (0, 1
4 , 0) these two constraints

correspond to parameter correlations between the moments of
atoms of any of the six magnetic Ho sites and those shifted
by ( 1

2 , 0, 0) and ( 1
4 , 1

2 , 0) to have opposite signs and the same
moment value.

These constraints are given in columns 1 → 3 of table 2
and it is evident that they provide a significant parameter
reduction. Thus the twelve Ho magnetic orbits are regrouped
into four independent Hoν sites (ν = 1, . . . , 4) given at the top
of the corresponding columns. Each of these sites is composed
of one orbit of three distinct sites: Ho1 comprises orbit 1 of
the 4i , 4 j and 8l sites while Ho2 comprises orbit 2 of the same
sites. Ho3 and Ho4 sites comprise orbit 1 and orbit 2 of the
group of 2e, 2 f and 4k sites, respectively.

The best fit is found for a model where the ordering of half
of the Ho atoms in the cell comprising the two orbits of the 8l
and 4k sites is described by the �1 representation, while the
other half, comprising the orbits of the 4i, 4j, 2e and 2f sites, is
described by �3. This indicates a further symmetry reduction
to the monoclinic space group P11m.

The refinement converged for equal values of the Fourier
coefficients for the (eightfold) Ho1 and Ho2 sites and equal
values of the (fourfold) sites Ho3 and Ho4. Because of the
large number of atoms we give explicitly the signs of the
observed modes for all atoms in the cell in table 4. The
refined parameters are then given in tables 5a, 5b and 6 for
a full set of temperatures. Figures 3 and 4 (top part) show
two characteristic refined patterns of the LT2 range that will
be discussed below. The refined lock-in structure is shown in
figure 5(a) at 1.6 K.

3.2.2. LT magnetic refinements of the D1A 2.99 Å data.

The LT2 range (T3 = 4.8 K → T2 = 8.1 K). The
refinements of the LT 1.9108 Å data based on model (I) (q =
(0, 1

4 , 0) relating to the (2a, b, 3c) P-cell; see table 6) led
to a modulated canted moment arrangement. However due
to the large number of overlapping magnetic peaks, strong
correlation exists between moment values and background.
Furthermore from the D1B LT data we got an indication that
the qy component is slightly incommensurate with the crystal
lattice over the LT2 range 4.8 K → 8.1 K. For this reason we
focus on the results of the LT2 refined D1A patterns collected
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Table 5a. Refinements of HR D1A data for HoGe3 in the HT range with wavevector q2 = (q2x , 0, q2z) relating to C-cell (a, b, c) and the LT
range with (model (I)) q = (0, qy,0) relating to the enlarged P-cell (2a, b, 3c). Sqi are the Fourier coefficients and ϕSqc◦ their angles with c,
ϕSqi the phases among the various orbits (in fractions of 2π). Also given is the percentage of observed q2 and q magnetic intensities
(161 and 2182 reflections respectively).

No
λ = 2.99 Å
T (K)

q2x

q2z (a, b, c)
Sq2

ϕSq2c◦
qy

(2a, b, 3c)
SqHo1,Ho2
SqHo3,Ho4

ϕSqHo3
ϕSqHo4

ϕSqc◦
Ho1,Ho2

ϕSqc◦
Ho3,Ho4

Int q2

Int q%
RB, Rwp,

Rexp%, χ2
Rmq2,
Rmq%

1 1.66 0.25 11.4(1.0) 0.467(10) 44(1) — 2.4, 14.1 —
5.2(5) 0.448(13) 0 41 5.5, 6.6 7.1

2 3.43 0.25 11.3(1.0) 0.464(10) 46(1) — 2.7, 14.2 —
5.3(7) 0.427(13) 0 41 T3 4.7, 8.9 7.5

3 5.35 0.2565(3) 10.3(8) 0.487(9) 35(1) — 2.3, 13.7 —
6.8(7) 0.502(10) 0 39 5.7, 5.8 7.8

4 5.83 0.2585(3) 10.0(8) 0.485(9) 36(1) — 2.3, 13.7 —
6.8(6) 0.505(10) 0 38 5.7, 5.7 7.9

5 6.3 0.2602(2) 9.7(8) 0.486(9) 34(1) — 2.0 13.5 —
7.1(6) 0.512(10) 0 37 5.8, 5.4 7.4

6 6.77 0.2624(2) 9.3(8) 0.488(9) 34(1) — 2.2, 13.8 —
7.3(6) 0.511(10) 0 36 5.9, 5.5 7.8

7 7.24 0.2642(2) 8.9(7) 0.488(9) 35(1) — 2.1, 13.6 —
7.2(6) 0.519(10) 0 34 6.0, 5.2 7.8

8 7.71 0.2649(3) 8.3(7) 0.496(9) 40(1) — 3.0, 15.1 —
6.6(6) 0.528(11) 0 31 6.1, 6.1 9.3

9 7.80 0.4959(5) 1.8(1) 25(18) 0.2623(3) 7.6(7) 0.542(9) 44(1) 1.6 3.0, 14.4 20
0.3355(7) 6.6(6) 0.582(11) 0 28 6.2, 5.4 8.7

10 7.89 0.4947(2) 3.0(6) 22(7) 0.2619(3) 6.9(5) 0.538(11) 44(1) 4.5 2.5, 12.8 12.9
0.3353(2) 5.6(4) 0.561(15) 0 23 6.3, 4.1 10.2

11 7.99 0.4945(1) 4.47(4) 20(3) 0.2602(5) 6.2(3) 0.543(16) 47(2) 9.9 2.6, 13.0 8.8
0.3348(1) 4.1(4) 0.590(20) 0 17 6.0, 4.2 12.4

12 8.08 0.4940(1) 5.55(4) 20(2) 0.2579(9) 5.3(4) 0.615(32) 52(3) 15.4 T2 2.7, 13.6 9.2
0.3347(1) 2.5(4) 0.774(42) 0 11.1 6.1, 4.9 —

13 8.17 0.4935(1) 6.27(4) 26(2) — 21.4 2.8, 14.4 9.1
0.3351(1) — 6.3, 5.2 —

14 8.64 0.4931(1) 6.78(4) 23(2) 23.8 2.5, 12.5 6.5
0.3355(1) — 6.0, 4.5 —

15 9.10 0.4928(1) 6.45(3) 21(2) 22 T1 2.4, 12.2 6.6
0.3356(1) — 6.1, 4.2 —

16 10.01 0.4930(1) 5.35(4) 22(2) 16.3 2.6, 11.9 6.1
0.3358(1) — 6.4, 3.7 —

17 10.90 0.4953(3) 2.47(5) 36(5) 3.8 TN 2.4, 11.3 15.2
0.3385(3) — 4.9, 5.4 —

18 14.0 — 2.5, 11.9 —
— 6.1, 3.7 —

Table 5b. Refinements of HR D1A HoGe3 data in the LT range with (model (II)), q3 = ( 1
2 , q3y, 0), q4 = ( 1

2 , q4y,
1
3 ) phase, relating to the

C-cell (a, b, c). Sqi are the Fourier coefficients and ϕSqc◦ their angles with c, ϕSqi the phases among the various orbits (in fractions of 2π).
Also given is the percentage of observed (q3,q4) magnetic intensities (323).

λ = 2.99 Å
T (K) q3y = q4y

Sq3Ho1,Ho2

Sq4Ho1,Ho2 ϕSq4Ho2

ϕSq4c◦
Ho1

ϕSq4c◦
Ho2

Int q3, q4

%
RB, Rwp,

Rexp%, χ2 Rmq3q4 %

1.66 0.25 3.7(1) 0.688(3) 160(1) 40 2.9, 16.2 9.7
9.1(1) 160(1) 4.7, 11.9

3.43 0.25 3.8(1) 0.683(3) 163(1) 39 2.8, 16.2 9.6
8.9(1) 163(1) 5.4, 8.9

5.35 0.2540(2) 2.98(6) 0.662(3) 8.3(5) 35 2.2, 14.1 8.4
8.38(6) 8.3(5) 5.8, 5.9

5.83 0.2574(3) 3.09(6) 0.664(2) 8.3(6) 37 2.6, 14.9 10.6
8.31(6) 5.7, 6.8

6.3 0.2591(2) 2.94(5) 0.659(2) 8.2(6) 34 2.3, 14.6 9.8
8.25(6) 5.7, 6.5

6.77 0.2614(3) 2.66(6) 0.660(2) −4(1) 33 2.4, 14.7 10.0
8.09(6) 5.8, 6.4

7.24 0.2632(3) 2.42(6) 0.656(2) −3(1) 31 2.0, 15.2 9.3
7.85(6) 6.0, 6.3
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Table 6. Refinements of HoGe3 HR D1A data in the HT range with wavevector q2 = (q2x , 0, q2z) relating to the C-cell (a, b, c) and in the
LT range with (model (I)) q = (0, 1

4 , 0) relating to the enlarged P-cell (2a, b, 3c). Sqi are the Fourier coefficients and ϕSqc◦ their angles with
c, ϕSqi the phases among the various orbits (in fractions of 2π). Also given is the percentage of observed q2 and q magnetic intensities (663
and 7930 reflections respectively).

λ = 1.9108 Å q2x Sq2 SqHo1−Ho2 ϕSqHo3 ϕSqc◦
Ho1−Ho2 Int q2 RB, Rwp Rmq2,

T (K) q2z ϕSq2c◦ SqHo3−Ho4 ϕSqHo4 ϕSqc◦
Ho3−Ho4 Int q% Rexp%, χ2 Rmq%

1.70 11(1) 0.433(9) 42(1) 3.0, 13.7 —
7.5(9) 0.404(12) 0 39 3.5, 15 9.5

3.47 12(1) 0.450(8) 35(1) 2.8, 12.5 —
9.4(9) 0.436(9) 0 40 4.4, 7.8 8.0

5.42 11(1) 0.445(8) 31(1) 2.7, 12.3 —
10(1) 0.429(9) 0 40 4.6, 7.8 7.6

7.37 7.9(1.2) 48(1) 3.0, 13.7 —
6.8(1.1) 0 23 5.2, 6.8 12.3

8.34 0.4932(1) 6.93(4) 2.6(5) 53(14) 20 2.8, 11.1 6.3
0.3376(1) 20(2) 1.7(1.2) 2 5.2, 4.7 15.2

9.31 0.4926(1) 6.20(4) 16.6 2.9, 11.3 6.9
0.3383(1) 22(2) — 5.4, 4.3 —

10.28 0.4932(1) 4.50(5) 9.8 3.5, 12.0 9.4
0.3392(2) 26(3) — 5.7, 4.3 —

14.0 3.6, 12.0 —
5.9, 4.2 —

with the larger wavelength, which we present more extensively.
Figure 3 compares the refined 8.08 K patterns (top part) in the
IT magnetically ordered range with two coexisting magnetic
phases in proportions (total intensity contributions) of 16%
for q2 and 8% for q with the refined pattern in the LT state
at 7.71 K where only the q = (0, 1

4 , 0) phase exists (bottom
part). The refined magnetic parameters for model (I) are given
in table 5a together with the results for the HT range (q2

phase). We compare these results with those obtained from
refinements of the 1.9108 Å data given in table 6. We also give
the results for the LT data set of table 5a refined with model
(II) in table 5b.

The LT1 range: 1.6 K → T3, T3 = 4.8 K. Parts of the
observed and calculated neutron diffraction patterns of HoGe3

(D1A 2.99 Å data) are shown in figure 4(a) above (LT2 range)
and (b) below (LT1 range) the T3 = 4.8 K SR transition at
5.5 K at 1.6 K respectively. The best fit of the LT data in
terms of Rm% values (about 2% lower) is obtained by the
refinements of the 2.99 Å data using model (I). We would like
to note that the refinement converges when the moments of the
atoms shifted by ( 1

4 ,
1
2 , 0) are constrained to the same value

(but opposite directions) as those for the origin and are not
included in tables 5a and 6. The refined Fourier coefficients of
the two D1A data sets (tables 5a and 6) change in value below
5.5 K and down to 1.6 K but their angles to the c axis are the
same. In contrast to the TbGe3 case, the lock-in transition in
HoGe3 at T3 does not lead to an equal moment structure or
to a uniaxial structure. Between the HT (figure 2) and the LT
structures there is a rearrangement of the magnetic moments.
In both structures some of the moments point along c, as for
sublattice R1 for the HT phase and sublattices R3 and R4 for
the LT1 phase (see figure 5(a)), while the moments of the R1

and R2 sublattices of the LT1 phase undergo rotations within
the plane (b, c).

3.3. LT1 magnetic structures

Figure 5 displays two models of the LT1 lock-in magnetic
structures at 1.6 K. The moment values in the two plots
are derived from the refined Fourier coefficients given in
table 5a for model (I) (figure 5(a)) and in table 5b for
model (II) (figure 5(b)) using expression (1). As already
mentioned, the number of magnetic structures that can be
deduced from the refined Fourier coefficients of a given model
using expression (1) depends on the free choice of the global
phase in the case of a single vector and of its harmonics,
or of the relative phases of Fourier coefficients of symmetry
independent vectors of the same basis. This information
cannot be obtained using diffraction. The phase choice of
the presented magnetic structures is deduced with the help of
the computer program ‘Moment’ by optimization of the local
moment value fluctuations.

Model (I) results in a multiaxial sine wave modulated
structure. As already mentioned, the 24 Ho atoms split into
twelve independent magnetic sites: two fourfold, six twofold,
and four single. In our calculations these are regrouped into
the four sites Ho1, Ho2, Ho3 and Ho4. The best fit in this
model is obtained for the modes given in table 4 and is shown
in figure 5(a). The refinements indicated strong correlations of
the Fourier coefficients SqHo1 ≈ SqHo2 that at 1.6 K measure
11.4 μB. Their angle to the c axis is close to ±π/4 within
the plane (b, c). The moments of atoms of the same site in
planes perpendicular to the wavevector have the same value,
while those in the direction of the wavevector depend on their
location. Within the experimental error the wavevector length
can be approximated as a fourfold cell enlargement along the
b axis q = (0, 1

4 , 0).

Setting the origin of the wave on Ho1 at (00.41 1
12 ) the

atoms translated by ntb where n = 2m + 1 have zero moment
S(q)x cos(2π/4). Choosing a global phase of −π/4 results in
equal moment values S1(q) cos(2π/4 − π/4) = S(q)

√
2/2 =

8
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Figure 3. Parts of the observed and calculated neutron diffraction patterns of HoGe3 (D1A, 2.99 Å data): in the intermediate temperature (IT)
magnetically ordered state at 8.08 K, with two coexisting magnetic phases in proportions (in intensity contributions) of 16% for q2 and 8% for
q and (b) in the LT2 state at 7.71 K with only q contributions.

8.0(7) μB. The moments of atoms translated by 2ntb point in
opposite directions.

The moment arrangement displayed in figure 5(a) for 2×b
cells makes use of the global phase factor −π/4. Thus the
majority ( 2

3 ) of magnetic Ho atoms comprising sites (Ho1,
Ho2) have a local moment value equal to 8.0(7) μB/Ho
atom. In this arrangement the moments of Ho1 and Ho2
atoms located at the corners of a trigonal prism are almost
mutually perpendicular. The third corner of the trigonal prism
is occupied by atoms of the sites Ho3 and Ho4 or of those
shifted by ( 1

4 ,
1
2 , 0). Their moments are confined to the c

axis and their average ordered local moment values are the
same, 3.4(4) μB. However there are two distinct values that
alternate along the direction of the wavevector (b). These are
4.5(4) μB and 2.8(3) μB for the Ho3 site and 5.0(5) μB and
1.7(2) μB for the Ho4 site. Then the average moment value
of 6.5(6) μB/Ho atom in the cell compares favourably with
the moment value of 7 μB obtained from the field dependent
magnetic measurements at 1.8 K (see part I).

For model (II) with the symmetry independent vectors
q3 = ( 1

2 , 1
4 , 0) and q4 = ( 1

2 , 1
4 , 1

3 ) things are more complex
as there are two distinct global angles, one for each vector.
The optimized global phase values �G are −0.455 and 0.379

for the two Fourier components respectively. The resulting
local moments for a number of cells, 2 × a 2 × b 3 × c (see
figure 5(b)), of the two Ho sublattices vary in magnitude and
in direction around c. For Ho1 the local moment scatters over
2.7 μB → 10.9 μB and for Ho2 over 1.6 μB → 10.8 μB. The
maximum moment angle is closer to the c direction within the
plane (b, c) than in the HT collinear model. This is slightly
reminiscent of the fluctuating HT structure found in TbGe3

although the wavevectors are completely different.
Furthermore because the star of q3 has four arms and that

of q4, eight arms, one should keep in mind that the symmetry of
the magnetic structure in such cases of multi-q vectors depends
also on the number of branches participating in the transition
that cannot be detected from neutron powder diffraction data
and is not addressed in the present analysis. The magnetic
structure shown in figure 5(b) is based on the summation of
the Fourier components associated with a single branch of
each star of the two multi-q wavevectors. The inclusion of
further Fourier components associated with other branches of
the wavevector star may lead to a large variety of magnetic
arrangements.

Both LT models make simplifications in order to reduce
the number of free parameters, as the development of a more

9
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Figure 4. Parts of the observed and calculated neutron diffraction patterns of HoGe3 (D1A, 2.99 Å data) (b) in the LT2 range at 5.5 K and in
the LT1 range at 1.6 K below the SR transition at T3 = 4.8 K.

general model in the 24 times larger cell is not feasible on
the basis of powder diffraction. As already said, model (I)
led to better fits than model (II). It also leads to the ordered
moment value of 8.0 μB/Ho atom for 2

3 of the Ho atoms
below the lock-in transition. The structure shown in figure 5(a),
where the atoms with the larger moments at the corners of a
trigonal prism are almost perpendicular to each other, reflects
the ‘effort’ of the system to overcome frustration [12, 13],
while the moment direction of the third atom of the
trigonal prism points along the c direction and its value is
reduced.

Both models provide satisfactory results in the tempera-
ture range 5.5 K → 8.1 K. On the other hand, neither model
provides a full explanation of the observed changes that occur
below the lock-in transition at T3 = 4.8 K, where the wavevec-
tor becomes commensurate. This is seen in figure 4(b) in the
refinements of the 1.6 K data where the increase of the two
peaks denoted by arrows is not explained by any of the mod-
els. Such details may only be answered using single-crystal
data not yet available to us. Of course there is still the possibil-
ity that these peaks arise from a small amount of overlapping
impurity phase peaks.

3.4. Thermal variation of the HT and LT wavevectors

Irrespective of the open questions concerning the model choice
in multiple-q vector magnetic structures, our refinements
enlarge the experimental information with respect to the
thermal behaviour of the wavevectors. In particular, this relates
to the LT range, due to the huge peak overlap. The behaviour
of the LT vector could only be obtained from the refinements
of the 2.99 Å data for the two models; see figure 6(a). For
both models the qy wavevector component appears at the
first-order transition at T2, where the (q1, q2) HT modulated
structure, instead of a lock-in to the commensurate structure
(2a, b, 3c), jumps to another reciprocal lattice point. The LT
magnetic structure is incommensurate with the crystal lattice
with a partial lock-in at T2. The wavevector describing the LT
ordering, q = (0, qy, 0), and a six-times larger cell (2a, b, 3c),
varies in length with temperature. From T2 = 8.1 K down to
the LT lock-in transition at T3 = 4.8 K, qy decreases gradually
with decreasing temperature from 0.265 to qy = 1

4 .
The thermal variation of the HoGe3 HT wavevector

components is compared to that of the TbGe3 compound in
figures 6(b) and (c) as the two systems are described using
the same incommensurate wavevectors (q1, q2). However,
even their HT structures are very different: canted fluctuating

10
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(a)

(b)

Figure 5. The canted lock-in LT1 magnetic structure from refinements in the IC approximation of HoGe3 at 1.6 K (a) for two different
descriptions: (a) (2a, b, 3c) and q = (0, 1

4 , 0) and (b) q3 = ( 1
2 ,

1
4 , 0), q4 = ( 1

2 , 1
4 , 1

3 ) and the (a, b, c) cell. Only two cells are shown along the
b direction.

modulated magnetic structure with the moments changing in
value and direction within the plane (b, c) for TbGe3 and a q2

sine wave type modulated structure with the moments confined
within the plane (b, c) for HoGe3, disregarding the very weak
q1 contribution.

Besides the open question regarding the wavevector q1,
our data indicate that also q2 displays different thermal
behaviours in the two compounds. In both cases the
q2z component moves towards the lock-in value 1

3 with
decreasing temperature, though from different directions. For
HoGe3, q2z > 1

3 , and therefore it decreases with decreasing
temperature, while for TbGe3, q2z < 1

3 increases. In both
cases the component q2x is < 1

2 but its behaviours are quite
different in the two compounds. In TbGe3, q2x over TN → Tic

remains unchanged and jumps to the lock-in value q2x = 1
2

below Tic where the structure becomes collinear and starts to
square up. For HoGe3, q2x is seen to move slowly away from
the lock-in value over TN → T1 but its slope changes sign
below T1 = 9.5 K and moves smoothly towards the lock-in
value in the range down to T2 = 8.1 K where the first-order
transition occurs. Interestingly, in the narrow intermediate (IT)
range ≈8.1 K → 7.75 K, where q2 exists as a metastable
phase, the q2x component displays a steeper slope towards the
lock-in value 1/2 before the q2 phase fully disappears.

From these subtle observations, combined with the fact
that q1 appears also at T1, one gets the impression that between
T1 and T2 the lock-in mechanism of the (q1, q2) HoGe3 phase

is similar to that of TbGe3, but below T2 it competes with
a second mechanism. Our refinements show that just below
T2, when q2x and q2z become commensurate, q2 rotates to
the reciprocal lattice point ( 1

2 , qy,
1
3 ) where qy is temperature

dependent, and is found to vary gradually from 0.265 at 8.1 K
towards 0.25 at the lock-in temperature T3 = 4.8 K. A change
of the wavevector direction caused by a first-order lock-in
transition has also been observed by us for the orthorhombic
ErNiSi2 compound [14] with the Cmcm space group. In this
case the phase sequence is from the LT lock-in q = ( 1

2 , 0, 0)

to a general direction q = (0.1262(1), 0.022(2), 0.2273(1))

at HT.

4. Conclusions

The existence of complex phase diagrams comprising
commensurate and incommensurate HT magnetic phases
and the existence of phase transitions among them in
rare earth intermetallic compounds are widely observed
phenomena. They arise as a result of competition between
the RKKY long range exchange interaction, mediated via
the conduction electrons and the crystalline field anisotropy,
and small quadrupole interactions [5, 6]. In general the HT
incommensurate phases for Kramers ions such as Er, Dy, Gd,
Ce, Nd lock-in at low temperatures to commensurate structures
because of the entropy term in the free energy [5]. This
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Figure 6. Thermal variation of the q2 wavevector components of the HT range of HoGe3 (b) and TbGe3 (c). Also shown are the thermal
variations of the LT wavevector q = (0, qy,0) and the cell (2a, b, 3c) or of q3y = q4y in the (q3, q4) relating to the (a, b, c) cell. Apparently,
HoGe3 undergoes at T2 a first-order phase transition with a partial lock-in.

Table 7. Survey of the Néel (TN) and the lock-in (Tic) LT transition ordering temperatures of several RGe3 compounds observed using
neutron diffraction. Also the preferred moment directions (PMD) of the relevant sites have been listed for various wavevectors in the HT and
LT ranges.

Atom/parameter R = Tb [3] R = Dy [10] R = Ho R = Er [11]

TN (K) 40 24 12 7
Wavevectors, cell q1 = (q1x,0, 0), C q1 = (1/2, 0, 0), P q1 = (q1x , 0, 0), C 0, C
HT q2 = (q2x,0, q2z) q2 = (1/2, 0, 1/3) q2 = (q2x , 0, q2z)
PMD site R1

a c c c (x, y, 0)
PMD site R2 (0, y, z)ϕc = 30◦ (0, y, z, )ϕc = 24◦ —
Tic (K) 24 — 8.1 —
Wavevectors, cell q1 = (1/2, 0, 0), C � q3 = (1/2, 1/4, 0), C 0, C
LT q2 = (1/2, 0, 1/3) � q4 = (1/2, 1/4, 1/3)
Magnetic cell Vm 6 × V (2a, b, 3c) 3 × V ((a + b)/2, (a − b)/2, c) 24 × V (2a, 4b, 3c) V, (a, b, c)
PMD site R1, μ(μB) c, 8.1(1) c, 8.2 c 5.3b (x, y, 0), 8.6
PMD site R2 μ(μB) c, 8.1(1) c, 8.1 (0, y, z)11.5b —

a For R = Er the R site does not split below TN as q = 0.
b For Ho these are Fourier coefficients. The Ho moments derived by the phase optimization program over the range
1.2 μB → 8.0 μB result in six moment values depending on their position. The majority are equal to 8.0 μB and then
5 μB, and the minority are below 2 μB.
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has been observed for all examined RGe3 (R = Er, Dy, Tb)
systems.

The HT ordering observed in TbGe3 above TIC is
associated with (i) an incommensurate magnetic phase and
the concomitant loss of symmetry and (ii) a spin reorientation
transition from a uniaxial LT modulated magnetic structure
with two amplitudes to a canted complex HT structure. The
occurrence of canted arrangements as found in TbGe3 may
have its origin in various kinds of mechanisms such as the
appearance of higher order terms in the crystalline field or
of anisotropic exchange interactions of the Dzyaloshinskii–
Moriya type [7, 8]. Kimura [9] found by theoretical
calculations based on a 24-sublattice model for the HoCu2

orthorhombic compound that the origin of the spin canting
observed at HT was the biquadratic exchange interaction
between nearest neighbour Ho ions on adjacent ac planes.

In order to understand the preferred moment direction
(PMD) in these compounds we will first discuss the result
obtained for site R1. In rare earth compounds the anisotropy
is usually crystal field induced and can be described by
expressions of the type

K1 = −2/3αJ 〈r 2〉A0
2〈O0

2 〉 − 5βJ 〈r 4〉A0
4〈O0

4 〉. (3)

K2 = 35/8βJ 〈r 4〉A0
4〈O0

4 〉. (4)

The thermal averages of the second-and fourth-order
Stevens operators are represented by 〈O0

2 〉 and 〈O0
4 〉 and the

corresponding crystal field parameters are denoted by A0
2 and

A0
4. For simplicity, we have left higher order terms out of

consideration. For Tb, Dy and Ho, the Stevens coefficient αJ

is negative; for Er, αJ is positive.
The thermal averages of the second-and fourth-order

Stevens operators 〈O0
2 〉 and 〈O0

4 〉 fall off with temperatures
as high powers of the reduced R sublattice moment mr =
MR(T )/MR(0). It can be shown that 〈O0

2 〉 and 〈O0
4 〉 vary with

temperature as m3
r and m10

r , respectively. This means that at the
higher temperatures it is reasonable to neglect the fourth-order
crystal field contributions in equations (3) and (4). If we look
at the PMD of R1 sites in table 7 we see that in the HT range it
is parallel to c for R = Tb, Dy, Ho but perpendicular to c for
R = Er. This means that for the former three compounds one
has K1 > 0 whereas for R = Er one has K1 < 0. Assuming
a positive value of A0

2, these results are apparently perfectly
described by (the first term) of equation (3), given the fact that
αJ is negative for R = Tb, Dy, Ho but positive for R = Er.
Further inspection of the results displayed in table 7 reveals that
in the LT range also the situation is not changed for the PMD of
the R1 site, meaning that the possible influence of the fourth-
order term in equation (3) is slight, the second-order term being
dominant.

Before we discuss the PMD of the R2 sites we wish to
recall that the R1 site and R2 site are crystallographically
equivalent. This means that the crystal fields present at these
sites are similar, and the values of A0

2 (and also those of A0
4)

have to be identical. The same should be true for the anisotropy
constants and the corresponding PMDs. Surprisingly this is
only the case for R = Dy and Er (for R = Er one has

R1 ≡ R2), and for R = Tb and R = Ho the PMD is an easy
cone instead of an easy axis in the HT range. The conditions
for an easy cone are K1 < 0 and K2 > 0, which would imply
that the sign of K1 has changed from positive for R1 to negative
for R2. This means that a corresponding sign change must also
apply for the A0

2 values of R1 and R2. As we already outlined
above, this is physically unrealistic because these two sites are
crystallographically equivalent and their A0

2 values should be
virtually identical. Summarizing our results from the crystal
field analysis we might say that experimental PMD data for
site R1 in all four compounds can be satisfactorily explained by
means of crystal field theory, as exemplified by equations (3),
and (4), requiring a common set of crystal field parameters in
these isostructural compounds. However, the simple crystal
field approach fails on extending it to the R2 site in spite of the
fact that the R1 and R2 sites are crystallographically equivalent.

As a possible reason for the breakdown of the simple
crystal field approach we could mention that this approach
is only valid if the crystal field splitting is small compared
to the exchange splitting. Apparently this is not the case for
site R2. Although the sites R1 and R2 are crystallographically
equivalent, they are not magnetically equivalent, meaning that
the exchange fields are different. In fact, that is the origin
of the difference between the two sites, which is closely
related to the presence of magnetic frustration [12, 13] in
these materials due to the particular geometric arrangement
of trigonal prisms with antiferromagnetic interactions. Our
conclusion is therefore that the presence of frustration in
the RGe3 compounds can strongly modify the crystal field
interaction on crystallographically equivalent sites which, at
least partially, can explain the complex magnetic ordering
phenomena of these compounds.
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